Exercise attenuates the metabolic effects of dim light at night.
نویسندگان
چکیده
Most organisms display circadian rhythms that coordinate complex physiological and behavioral processes to optimize energy acquisition, storage, and expenditure. Disruptions to the circadian system with environmental manipulations such as nighttime light exposure alter metabolic energy homeostasis. Exercise is known to strengthen circadian rhythms and to prevent weight gain. Therefore, we hypothesized providing mice a running wheel for voluntary exercise would buffer against the effects of light at night (LAN) on weight gain. Mice were maintained in either dark (LD) or dim (dLAN) nights and provided either a running wheel or a locked wheel. Mice exposed to dim, rather than dark, nights increased weight gain. Access to a functional running wheel prevented body mass gain in mice exposed to dLAN. Voluntary exercise appeared to limit weight gain independently of rescuing changes to the circadian system caused by dLAN; increases in daytime food intake induced by dLAN were not diminished by increased voluntary exercise. Furthermore, although all of the LD mice displayed a 24h rhythm in wheel running, nearly half (4 out of 9) of the dLAN mice did not display a dominant 24h rhythm in wheel running. These results indicate that voluntary exercise can prevent weight gain induced by dLAN without rescuing circadian rhythm disruptions.
منابع مشابه
Intermittent bright light and exercise to entrain human circadian rhythms to night work.
Bright light can phase shift human circadian rhythms, and recent studies have suggested that exercise can also produce phase shifts in humans. However, few studies have examined the phase-shifting effects of intermittent bright light, exercise, or the combination. This simulated night work field study included eight consecutive night shifts followed by daytime sleep/dark periods (delayed 9 h fr...
متن کاملAREGU December 46/6
Baehr, Erin K., Louis F. Fogg, and Charmane I. Eastman. Intermittent bright light and exercise to entrain human circadian rhythms to night work. Am. J. Physiol. 277 (Regulatory Integrative Comp. Physiol. 46): R1598–R1604, 1999.—Bright light can phase shift human circadian rhythms, and recent studies have suggested that exercise can also produce phase shifts in humans. However, few studies have ...
متن کاملCircadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise
Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of thre...
متن کاملDim light at night disrupts molecular circadian rhythms and increases body weight.
With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Ex...
متن کاملAcute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms.
The circadian system is primarily entrained by the ambient light environment and is fundamentally linked to metabolism. Mounting evidence suggests a causal relationship among aberrant light exposure, shift work, and metabolic disease. Previous research has demonstrated deleterious metabolic phenotypes elicited by chronic (>4 weeks) exposure to dim light at night (DLAN) (∼ 5 lux). However, the m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physiology & behavior
دوره 124 شماره
صفحات -
تاریخ انتشار 2014